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Line Graph Neural Networks for Link Prediction
Lei Cai, Jundong Li, Jie Wang, Shuiwang Ji Senior Member, IEEE

Abstract—We consider the graph link prediction task, which
is a classic graph analytical problem with many real-world
applications. With the advances of deep learning, current link
prediction methods commonly compute features from subgraphs
centered at two neighboring nodes and use the features to predict
the label of the link between these two nodes. In this formalism, a
link prediction problem is converted to a graph classification task.
In order to extract fixed-size features for classification, graph
pooling layers are necessary in the deep learning model, thereby
incurring information loss. To overcome this key limitation, we
propose to seek a radically different and novel path by making
use of the line graphs in graph theory. In particular, each node
in a line graph corresponds to a unique edge in the original
graph. Therefore, link prediction problems in the original graph
can be equivalently solved as a node classification problem in
its corresponding line graph, instead of a graph classification
task. Experimental results on fourteen datasets from different
applications demonstrate that our proposed method consistently
outperforms the state-of-the-art methods, while it has fewer
parameters and high training efficiency.

Index Terms—Deep learning, link prediction, graph neural
networks, line graphs.

L INK prediction models are used to learn the distribution
of links in graphs and predict the existence of potential

links [1], [2], [1], [3], [4]. In many real-world applications, the
input data is represented as graphs, and link prediction models
can be applied to tasks like friend recommendation in social
networks [5], product recommendation in e-commerce [6],
[7], [8], knowledge graph completion [9], protein interaction
analysis [10], and metabolic network reconstruction [11].

To solve the link prediction problem, various heuristic
methods were proposed to measure the similarity between two
target nodes and predict the existence of link [12]. However,
the heuristic functions in these methods are often manually
designed for a specific network, limiting their applicability to
diverse areas. For example, the number of common neighbors
[5] is employed as a first-order heuristic function to predict the
potential friendship relations in social networks and achieves
satisfactory performance. However, this heuristic may not
work well on protein-protein interaction networks, since two
proteins sharing many common neighbors may have a low
probability of interacting [13].

Many heuristic methods have been proposed to solve graph
link prediction problems from different areas. However, there
still exist challenges to select heuristic functions given a new
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network. To tackle these challenges, the link prediction model
based on graph neural networks (SEAL) was proposed to learn
heuristic functions from h−hop neighborhood automatically
[14]. This method achieved the state-of-the-art performance
on a variety of graphs. The SEAL model extracts an h-
hop enclosing subgraph centered on the two target nodes
and predicts the existence of link based on the topology
of enclosing subgraph. Therefore, the link prediction task
is converted to the graph classification problem, where the
model takes the enclosing subgraph as inputs and predicts
the existence of link between them. Normally, graph neural
networks [15] are employed to learn features to represent the
topology of the subgraph. Therefore, graph pooling layers [16],
[17], [18] are required to compute a fixed-size feature vector
from the whole graph while some information may be lost in
this operation. For example, in sort pooling operations [15],
only partial nodes can be selected to represent the graph. In
addition, a graph neural network with pooling layers often
requires more training time to converge.

Although the SEAL works well in many types of graphs, it
still has some limitations, due to the usage of pooling oper-
ations in the graph neural network. To solve the information
loss in pooling layers, we propose to learn the features of
the target link directly instead of extracting features from the
whole enclosing subgraph. Compared with extracting features
from the whole graph, learning node embedding is more
effective. Graph convolution layers [19], [20], [21], [22] have
shown promising performance for learning node embeddings.
However, graph convolution layers are not effective enough
to learn edge embeddings from graphs. To address this issue,
we propose to convert the original enclosing subgraph into a
corresponding line graph. Each node in the line graph has a
unique corresponding edge in the original graph. In addition,
the topology information can be well preserved during the
transformation. Therefore, graph convolution layers can be
directly applied to learn the node embeddings in the line graph.
The node embeddings in the line graph are used as features
for the edges in the original graph to predict the existence of
links. Therefore, the link prediction task can be regarded as
the node classification problem in our proposed framework.
Our contributions can be summarized as follows:

1) We analyze the limitations of exiting deep learning based
link prediction methods due to graph pooling operations
and envision the need to develop a new method that do
not have the information loss problem.

2) We propose a line graph neural networks model for
the link prediction task, where the original graph is
transformed into a corresponding line graph to enable
efficient feature learning for the target link.

3) We conduct experiments on 14 datasets from different
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Fig. 1. Illustration of our proposed model based on line graph neural networks. The two target nodes in the graph are marked with double circles. To predict
the existence of the link, an h-hop enclosing subgraph centered on two target nodes is extracted. A node labeling function is employed to assign the label
for each node to represent the structural importance to the target link. To learn the feature of the target link, we transform the enclosing subgraph into a
corresponding line graph. The graph convolution networks are used to learn the feature that is employed to predict the existence of link.

areas. Our proposed method can achieve promising
performance on different datasets and outperform all
baseline methods, including the previous state-of-the-art
model.

4) Our proposed method can achieve promising perfor-
mance only with graph convolution layers, and thus
requires fewer parameters. In addition, the neural net-
work consisting of graph convolution layers converges
significantly faster than the state-of-the-art model.

I. RELATED WORK

Link prediction models can be grouped into three categories
– heuristic methods, embedding methods, and deep learning
methods.

Heuristic Methods: The key idea of heuristic methods is
to compute the similarity score from the neighborhood of
two target nodes. Based on the maximum hop of neighbors
used in the computation procedure, heuristic methods can be
categorized into three groups, including first-order, second-
order, and high-order heuristics. Common neighbors and pref-
erential attachment [12] are typical first-order heuristics since
only one-hop neighbors are employed to compute the sim-
ilarity. Second-order heuristic methods that involve two-hop
neighbors include Adamic-Adar [5] and resource allocation
[12], [23]. In addition, high-order heuristics, including Katz
[24], rooted PageRank [25], and SimRank [26] were proposed
to compute the similarity score between a pair of nodes
using the whole graph. High-order heuristic methods can
often achieve better performance than low-order heuristics but
require more computation cost. Since many heuristic methods
were proposed to handle different graphs, selecting a favorable
heuristic method becomes a challenging problem.

Embedding Methods: The similarity between two target
nodes can also be calculated based on node embeddings [27].
Therefore, embedding methods that can learn the features
of nodes from graph topology were also employed to solve
the link prediction task, and typical methods along this line
include matrix factorization [6] and stochastic block [10] etc.
Recently, inspired by world embedding methods in natural
language processing tasks, recent advances such as deepwalk
[28], LINE [29], and node2vec [30] were proposed to learn
node embedding via the skip-gram method. Deepwalk gener-
ates random walks for each vertex with a given length and
picks the next visited node uniformly from the neighbors of
the current node. Later on, the skip-gram method is employed

to learn node embeddings from the generated node sequence.
The node embedding methods can learn informative features
from the graph and thus achieve satisfactory performance for
the link prediction task. However, the performance of link node
embedding methods can be affected if the graph becomes very
sparse.

Deep Learning: To overcome the limitations of heuristic
methods, deep learning based methods were proposed to learn
the distribution of links from the graph automatically [31],
[14], [32]. Weisfeiler-Lehman Neural Machine was proposed
to predict the existence of a link using a fully-connected neural
network based on a fixed-size enclosing subgraph centered on
the two target nodes [31]. To predict the existence of a link
from a general enclosing subgraph, SEAL [14] converts the
link prediction task to a graph classification problem and solve
it using graph neural networks. Due to the promising learning
ability of graph neural networks, the SEAL model achieves the
state-of-the-art performance for the link prediction problem.
Later on, a multi-scale link model was also proposed to extend
SEAL to achieve better performance on plain graphs [32].

II. THE PROPOSED METHODS

A. Problem Formulation

In the link prediction task, we are often given a network
represented as an undirected graph G = (V,E) which consists
of a set of vertices V = {v1, v2, ..., vn} and a set of links E ⊆
V × V . The graph can also be represented by the adjacency
matrix A. If there exists a link between vertex i and j, then
Ai,j = 1 and Ai,j = 0 otherwise. The goal of link prediction
is to predict potential or missing links that may appear in a
foreseeable future.

B. Overall Framework

Deep learning based link prediction models were proposed
to learn the link distribution from the existing links and
determine whether a link exists between two target nodes in
the graph. For example, when we predict if there exists a
link between two users in a social network, the number of
mutual friends is commonly considered as a main criterion.
If two users share many mutual friends, they are more likely
to be connected. In this sense, if the 1-hop subgraph induced
from two target nodes are densely connected, we will have
higher chances to observe a link between them. Considering
the variation of networks from different areas, deep learning
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based methods were proposed to learn the topology feature of
subgraphs automatically and predict the existence of links[14].
In particular, the deep learning based link prediction models
generally consist of the following three components:

1) Enclosing subgraph extraction: The existence of a po-
tential link can be determined by the topology of a local
enclosing subgraph centered on two target nodes. To
seek a balance between computation cost and prediction
performance, an h−hop enclosing subgraph is extracted
for learning features and predicting the existence of
potential links.

2) Node labeling: Given an enclosing subgraph, we are
required to identify the role of each node in the graph
before learning features and predict the existence of
the link. That is, we need to identify the target nodes
and mark the structural importance of other nodes. A
favorable labeling function is of great importance for
the further feature learning procedure.

3) Feature learning and link prediction: The output of
node labeling function can be used as the attribute
of each node in the graph. The attribute can indicate
the structural importance of the link to be predicted.
Graph neural networks are commonly employed to learn
features from the given enclosing subgraph, which can
be further used to predict the existence of a link.

In this work, we propose line graph neural networks for the
link prediction task. Our proposed model can be illustrated in
Figure 1. Following the general framework of deep learning
based link prediction models, we extract an h-hop enclosing
subgraph centered on two target nodes and assign each node
with a label that can represent the structural importance to
the target link. The key contribution of our proposed method
is the feature learning component. In the previous state-of-
the-art model, graph convolution and graph pooling layers are
employed to obtain a fixed-size feature vector to predict the
existence of the link considering the scale variation of different
graphs. Since this graph pooling layer is employed in the
state-of-the-art model, only part of graph information can be
preserved for further prediction. To overcome the limitations
of the SEAL method, we propose to convert the enclosing
subgraph to a line graph where each node corresponds to
a unique link in the original graph. The feature of the link
can be learned directly using the entire input from line graph
representation. Thus the proposed method can greatly improve
the performance of the link prediction.

C. Line Graph Neural Networks

Line Graph Space Transformation In order to predict the
existence of a link, graph neural networks are employed to
learn features from a given enclosing subgraph Gh

v1,v2 , where
Gh

v1,v2
is an h-hop enclosing subgraph centered on two target

nodes v1 and v2, and each node in the enclosing subgraph
is associated with a label that can indicate the structural
importance to the target link. Different enclosing subgraphs
commonly contain a different number of nodes. To extract
a fixed-size feature vector for the further prediction, we will
lose some information during the procedure. To overcome this

a-b

a-c

a-d

b-c

b-d

a b

c d

(A) Original Graph (B) Line Graph

Fig. 2. Illustration of the line graph transformation procedure. Each node
in the line graph corresponds to a unique edge in the original graph and is
marked with the name of two end nodes.

challenge, we propose to convert the enclosing subgraph to the
line graph, which represents the adjacencies between edges of
the original graph. Thus, the feature of the link to be predicted
can be learned directly in the line graph representation using
graph convolution neural networks.

The line graph L(G) of a given undirected graph G is
proposed to represent the adjacencies between edges of G
[33], [34]. The definition of line graph L(G) can be defined
as follows.

Definition 1: The edges in the original graph G are consid-
ered as nodes in the line graph L(G). Two nodes in L(G) are
connected if and only if the two corresponding links share the
same node.
An example of the line graph transformation procedure is
illustrated in Figure 2. The original undirected graph G
contains four nodes and five edges. Therefore, the line graph
L(G) contains five nodes. The node (a − b) and (a − c) in
the line graph are connected since the corresponding edges in
the original graph G share a common node a based on the
definition of the line graph.

Based on the definition of the line graph, we can obtain the
following property of L(G): Given a graph G with m nodes
and n edges, the number of nodes of the line graph L(G)
equals to n. The number of edges in L(G) is 1

2

∑m
i=1 d

2
i − n,

where di is the degree of node i in graph G.
This property guarantees that learning features in the line

graph space will not increase the computation complexity
significantly. In additional, converting a graph G to line graph
L(G) only costs linear time complexity [35], [36].

Node Label Transformation An enclosing subgraph can be
converted into the corresponding line graph through transfor-
mation. However, this procedure can only transform the topol-
ogy of a given graph. Each node in the enclosing subgraph
also contains a label l ∈ R generated by labeling function as
node attributes that can represent the structural importance.
During the transformation procedure, edges in the original
graph are represented as nodes in the line graph. The label l is
only assigned for nodes in the original graph. To transfer the
node label from the original graph directly, a transformation
function is required to convert the node label to edge attribute.
Thus the edge attribute can be assigned directly as the node
attribute in the line graph. In this work, we propose to generate
the edge attribute from the node label through the following

wxs
高亮

wxs
高亮
由原始图的节点特征得到边的特征，即线图的节点特征

wxs
高亮
labeling function
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function:

l(v1,v2) = concate(min(fl(v1), fl(v2)),max(fl(v1), fl(v2))),
(1)

where fl(·) is the node labeling function, v1 and v2 are the
two end nodes of the edge, and concate(·) represents the
concatenation operation for the two inputs. Since we only
consider undirected graph link prediction in this work, the
attribute of edge (v1, v2) and (v2, v1) should be the same. It
is easy to prove that the edge attribute generated by equation
(1) is consistent when switching the end nodes. In addition,
the structural importance information of the node can be well
preserved in the function.

The proposed method in equation (1) can well address
the edge attribute transformation in plain graphs. In some
cases, graphs are commonly provided with node attributes. For
example, in citation networks, the node attribute describing
a summary of the paper can be provided in the graph.
For attributed graphs, node attributes also play an important
role in the link prediction task. Therefore, the edge attribute
transformation function should be generalized to deal with
attributed graph. Following the edge attribute transformation
function in equation (1), we can concatenate the original node
attribute with the node label as the edge attribute. But the
edge attribute will not be consistent when we switch the order
of two end nodes in the undirected graph. To overcome this
limitation, we propose to deal with the original node attribute
and node label in different ways by:

l(v1,v2) = concate(min(fl(v1), fl(v2)),max(fl(v1), fl(v2)), Xv1+Xv2),
(2)

where Xv1 and Xv2 are the original attribute of node v1 and
v2. We propose to combine the node attribute using summa-
tion operation, which can guarantee the invariance of edge
attributes when switching the end nodes. The generated edge
attribute l(v1,v2) can be used as the node attribute directly in
the line graph. Therefore, the link prediction task is converted
to a node classification problem which can be solved by graph
convolution neural networks.

Feature Learning by Graph Neural Networks With recent
progress in graph neural networks, learning the graph feature
becomes a favorable solution that has been explored in various
graph analytical tasks [17], [20], [18]. In this work, we
employ graph convolution neural networks to learn the node
embedding in the line graph, which can represent an edge in
the original graph. Thus, the node embedding in the line graph
can be used to predict whether a potential link is likely to exist
in the network.

Given a line graph representation of the enclosing subgraph
L(Gh

v1,v2), the node embedding of (vi, vj) in the k-th layer of
the graph convolution neural network is indicated as Z(k)

(vi,vj)
.

Then the embedding of (vi, vj) in the (k+1)-th layer is given
by:

Z
(k+1)
(vi,vj)

= (Z
(k)
(vi,vj)

+ β
∑

d∈N(vi,vj)

Z
(k)
d )W (k), (3)

where N(vi,vj) is the set of neighbors of node (vi, vj) in the
line graph, W (k) is the weight matrix for the k-th layer, β

is a normalization coefficient. The input for the first layer of
graph convolution neural network is set to node attribute in
the line graph as Z0

(vi,vj)
= l(v1,v2). We then consider the link

prediction task as a binary classification problem and train the
neural network by minimizing the cross-entropy loss for all
potential links as:

LCE = −
∑
l∈Lt

(yl log(pl) + (1− yl) log(1− pl)), (4)

where Lt is the set of target links to be predicted, pl is the
probability that the link l exists in the graph, and yl ∈ {0, 1}
is the label of a target link that indicating whether the link
exists or not.

Connection with Learning on Original Graphs The key
idea of our proposed method is to learn edge features from
the enclosing subgraph and predict the existence of edge using
the features. In this work, the feature of edge e = (v1, v2) is
learned based on attributes of two end nodes as:

fe = g(fl(v1), fl(v2)), (5)

where fe is the edge feature, g(·) is the graph neural network
function. Although graph convolutional layers are performed
on the line graph, it still has connections with the same
operation on the original graph. We use the first layer graph
convolution layer as an example to illustrate this relationship.
We reformulate the equation (3) as:

Z1
(vi,vj)

= (l(v1,v2) + β
∑

d1∈Nv1

∑
d2∈Nd1

l(d1,d2)

+ β
∑

d3∈Nv2

∑
d4∈Nd3

l(d3,d4))W
(0).(6)

The graph convolution operation learns embedding for each
node by aggregating node embedding from its 1−hop neigh-
bors. It can be seen from equation (6) that the graph convolu-
tion on the line graph can aggregate the node embedding from
2−hop neighbors. In the line graph transformation procedure,
each node attribute is derived from two corresponding node
attributes. That is, the attribute of each node in the line
graph contains attributes from two nodes in the original graph.
Therefore, aggregating information from 1 − hop neighbors
is equivalent to performing the same operation on 2−hop
neighbors. It also shows that learning node embedding through
graph convolution in the line graph is more efficient than
that in the original graph in terms of neighbor embedding
aggregation.

D. The Proposed Algorithm

In this section, we provide a detailed description of the three
components for our proposed framework. There is no strict
restriction for the three steps. The given enclosing subgraph
extraction and graph topology labeling function in this section
can work well for most networks.

Enclosing Subgraph Extraction The existence of the link
between two nodes can be determined by the graph topology
centered on them. In general, we can achieve better perfor-
mance when more topology information is involved. However,
it will incur more computation cost. To seek a balance between

wxs
高亮
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performance and computation cost, we predict the existence
of the link between node vi and vj using 2−hop enclosing
subgraph as:

G2
(vi,vj)

= {v|min(d(v, vi), d(v, vj) ≤ 2)}, (7)

where d(v, vi) is the shortest path/geodesic distance between
v and vi.

Node Labeling Given an enclosing subgraph, we only know
the topology of the graph. Before we learn features of the
target link, we need to identify the role of each node in the
graph through a labeling function. The node labeling function
must satisfy the following criteria: (1) Identifying the two
target nodes. (2) Provide the structural importance of each
node to the target nodes. In this work, we employ an effective
node labeling function proposed by [14] as:

fl(v) = 1+min(d(v, v1), d(v, v2))+(ds/2)[(ds/2)+(ds)%2−1],
(8)

where ds = d(v, v1) + d(v, v2), (ds/2) and (ds%2) are the
integer quotient and remainder of d divided by 2, respectively.
In addition, the two target nodes v1 and v2 are assigned with
label 1 as fl(v1) = 1 and fl(v2) = 1. For any node v satisfying
d(v, v1) =∞ or d(v, v2) =∞, it will be assigned with label
0 as fl(v) = 0. The node labeling function provides a label
fl(·) ∈ R. In practice, the node label is represented as a one-
hot vector. As discussed above, the edge is represented as an
order invariant pair. The edge feature pair is represented as a
concatenation of two one-hot vectors. Algorithm 1 shows the
link prediction procedure using our proposed framework.

Algorithm 1 Link Prediction Model Based on Line Graph
Neural Networks

1: Input: Target link (v1, v2), Graph G
2: Output: Prediction result
3: Extract h−hop enclosing subgraph Gh

(v1,v2)

4: Apply node labeling function (8) to Gh
(v1,v2)

5: Generate edge attribute using equation (1) or (2)
6: Transform Gh

(v1,v2)
to line graph L(Gh

(v1,v2)
)

7: Apply graph neural networks to extract node embeddings
on L(Gh

(v1,v2)
) to predict the existence of link

III. EXPERIMENTS

In this section, we evaluate our proposed method on 14
different datasets for the link prediction task. Two evaluation
metrics, including area under the curve (AUC) and average
precision (AP) are employed in this work to measure the
performance of different models. The code and dataset used in
this work will be available online after the paper is published.

A. Datatsets and Baseline Models

In this work, we perform our proposed line graph link
prediction (LGLP) model on 14 different datasets, including
BUP, C.ele, HPD, YST, SMG, NSC, KHN, GRQ, LDG, ZWL,
USAir, EML, Power, and ADV [37], [38]. To demonstrate
that our proposed method can work well in different areas,
14 datasets are collected from 6 areas. In addition, graphs in

TABLE I
SUMMARY OF DATASETS USED IN OUR EXPERIMENTS. THE NUMBER OF

NODE, LINK, AVERAGE NODE DEGREE, AND GRAPH TYPE ARE PROVIDED
FOR EACH DATASET.

Name #Nodes #Links Degree Type
BUP 105 441 8.4 Political Blogs
C.ele 297 2148 14.46 Biology
USAir 332 2126 12.81 Transportation
SMG 1024 4916 9.6 Co-authorship
EML 1133 5451 9.62 Shared Emails
NSC 1461 2742 3.75 Co-authorship
YST 2284 6646 5.82 Biology
Power 4941 6594 2.669 Power Network
KHN 3772 12718 6.74 Co-authorship
ADV 5155 39285 15.24 Social Network
GRQ 5241 14484 5.53 Co-authorship
LDG 8324 41532 9.98 Co-authorship
HPD 8756 32331 7.38 Biology
ZWL 6651 54182 16.29 Co-authorship

different scales, including the number of nodes and links, are
used in the experiments. The details of the datasets are shown
in Table I.

In this work, we compare our proposed method with three
high-order heuristic methods including Katz [24], PageRank
(PR) [25], SimRank (SR) [26]. In addition, graph embedding
method node2vec (N2V) [39] and the state-of-the-art method
SEAL [14] are selected as baseline methods.

B. Experimental Setup

To assess the performance of our proposed method, we
randomly select 50% of existing links as positive training
samples, and the rest are used as positive test samples. In
addition, the same number of non-existed links are randomly
selected from the graph as negative samples for training and
testing. To demonstrate the effectiveness of our proposed
method with a different number of training samples, we also
select 80% training links for the experiments.

The parameters of baseline methods are tuned to achieve
the best performance on datasets. The damping factor in Katz
method is set to 0.001. The damping factor in PageRank is set
to 0.85. The constant factor in the SimRank is set to 0.8. The
dimension of node embedding for node2vec is set to 128.

For the SEAL framework, we employ the same setting as
the original paper [14]. The 2 − hop enclosing subgraph is
extracted for the SEAL framework, and the labeling function is
the same as equation (8) in this work. Three graph convolution
layers are employed to compute node embeddings, and the sort
pooling [15] is used to generate a fixed-size feature vector
for the enclosing subgraph. The output feature map for three
graph convolution layers is set to 32. The ratio of the sort
pooling layer is set to 0.6. Two 1-D convolution layers with
the number of output channels as 16 and 32, and two fully
connected layers are employed as a classifier to predict the
existence of a link. The SEAL model is trained for 50 epochs
on each dataset.

To guarantee the comparison between our proposed method
and SEAL model is fair, we employ the same graph neural
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TABLE II
AUC COMPARISON WITH BASELINE METHODS (80% TRAINING LINKS).

Model BUP C.ele USAir SMG EML NSC YST
Katz 87.10(±2.73) 84.84(±2.05) 92.01(±0.88) 86.09(±1.06) 88.45(±0.68) 98.00(±0.31) 80.56(±0.78)
PR 90.13(±2.45) 89.14(±1.35) 93.74(±1.01) 89.13(±0.90) 89.46(±0.63) 98.05(±0.29) 81.40(±0.75)
SR 85.47(±2.75) 75.65(±2.24) 79.21(±1.50) 78.39(±1.14) 86.90(±0.71) 97.19(±0.48) 73.93(±0.95)
N2V 80.25(±5.55) 80.08(±1.52) 85.40(±0.96) 78.30(±1.22) 83.06(±1.42) 96.23(±0.95) 77.07(±0.36)
SEAL 93.32(±0.84) 87.44(±1.21) 95.21(±0.77) 91.53(±0.46) 92.01(±0.38) 99.55(±0.01) 90.72(±0.25)
LGLP 95.24(±0.53) 90.16(±0.76) 97.44(±0.32) 92.53(±0.29) 92.03(±0.28) 99.82(±0.01) 91.97(±0.12)
Model Power KHN ADV LDG HPD GRQ ZWL
Katz 59.59(±1.51) 84.60(±0.79) 92.13(±0.21) 92.96(±0.19) 85.47(±0.35) 89.81(±0.59) 96.42(±0.12)
PR 59.88(±1.51) 88.43(±0.80) 92.78(±0.18) 94.46(±0.19) 87.19(±0.34) 89.98(±0.57) 97.20(±0.12)
SR 70.18(±0.75) 79.55(±0.90) 86.18(±0.22) 90.95(±0.14) 81.73(±0.37) 89.81(±0.58) 95.97(±0.16)
N2V 70.37(±1.15) 82.21(±1.19) 77.70(±0.83) 91.88(±0.56) 79.61(±1.14) 91.33(±0.53) 94.38(±0.51)
SEAL 81.37(±0.93) 92.69(±0.14) 95.07(±0.13) 96.44(±0.13) 92.26(±0.09) 97.10(±0.12) 97.46(±0.02)
LGLP 82.17(±0.57) 93.30(±0.09) 95.40(±0.10) 96.70(±0.07) 92.58(±0.08) 97.68(±0.10) 97.76(±0.01)

TABLE III
AP COMPARISON WITH BASELINE METHODS (80% TRAINING LINKS).

Model BUP C.ele USAir SMG EML NSC YST
Katz 85.94(±3.46) 85.94(±3.46) 93.51(±0.79) 87.68(±0.90) 90.54(±0.53) 98.02(±0.43) 85.76(±0.64)
PR 89.53(±3.11) 87.96(±1.69) 94.30(±1.27) 91.07(±0.59) 91.01(±0.67) 98.08(±0.34) 86.34(±0.72)
SR 81.10(±3.31) 66.43(±2.39) 69.80(±1.99) 70.39(±1.67) 87.24(±0.84) 96.55(±1.14) 77.56(±1.09)
N2V 81.47(±4.48) 77.98(±1.54) 82.53(±1.12) 77.01(±1.79) 83.08(±1.36) 96.81(±0.86) 78.48(±1.03)
SEAL 93.58(±0.68) 86.49(±1.08) 95.46(±0.59) 91.90(±0.31) 91.93(±0.31) 99.51(±0.01) 91.85(±0.20)
LGLP 95.46(±0.43) 89.70(±0.53) 97.37(±0.25) 92.92(±0.21) 92.61(±0.23) 99.82(±0.01) 92.98(±0.10)
Model Power KHN ADV LDG HPD GRQ ZWL
Katz 74.29(±0.83) 88.27(±0.32) 93.72(±0.16) 94.91(±0.27) 89.52(±0.32) 93.08(±0.29) 97.08(±0.09)
PR 74.74(±0.81) 92.17(±0.24) 94.03(±0.24) 96.26(±0.22) 91.01(±0.23) 93.18(±0.34) 97.69(±0.08)
SR 70.69(±0.67) 77.16(±0.81) 83.31(±0.35) 88.71(±0.79) 84.16(±0.42) 92.97(±0.31) 95.44(±0.15)
N2V 76.55(±0.75) 83.26(±0.79) 79.02(±0.65) 92.12(±0.50) 80.57(±0.81) 93.92(±0.31) 93.82(±0.39)
SEAL 83.91(±0.83) 93.40(±0.13) 95.18(±0.12) 96.55(±0.11) 93.41(±0.09) 97.86(±0.11) 97.54(±0.02)
LGLP 84.78(±0.53) 94.14(±0.09) 95.72(±0.08) 96.86(±0.06) 93.65(±0.08) 98.14(±0.10) 97.91(±0.01)

network architecture to compute node embeddings in the line
graph. It is worth noting that our proposed method does not
employ graph pooling and 1-D convolution layers. Therefore,
the number of parameters in our proposed method is much
fewer than that in the SEAL model. Our proposed method is
trained for 15 epochs on each dataset.

C. Results and Analysis

Plain Graph Link Prediction We perform our proposed
method and baseline methods on 14 datasets to compare
the performance of each model. We randomly split each
dataset into training and testing dataset for ten times. The
averaged AUC and standard deviations using 80% training
links are shown in Table II. The results in terms of AP
are shown in Table III. It can be seen from results that
heuristic methods cannot achieve satisfactory performance on
all datasets since the heuristic function is manually designed
thus cannot handle different cases. We find that the state-of-
the-art model SEAL always outperforms all heuristic methods
and embedding methods since it can learn the distribution of
links automatically from datasets. Our proposed LGLP model
can consistently achieve better performance than all baseline
methods, including SEAL in terms of two evaluation metrics.
It shows that our proposed method can learn better features
to represent the target link for prediction in line graph space.
In addition, our proposed method is more stable than other
baseline methods.

To demonstrate our proposed method can still achieve
satisfactory performance with limited training samples, we
conduct experiments on all datasets using 50% training links.
The averaged AUC and AP are shown in Table IV and Table V,
respectively. It can be seen from the results that our proposed
method outperforms all baseline methods significantly on most
datasets. We find that our proposed method can still perform
well, even using 50% training links. The AUC and AP are
close to that of using 80% training links.

In the experiments, we dynamically take 30%, 40%, 50%,
60%, 70%, and 80% of all the links in G as the training
set and the rest as the test set, respectively. We conduct
experiments with different training percentages and describe
the AUC results in Figure 4. The AUC value of our proposed
method is marked with a sold line, and other baseline methods
are marked with dashed lines in different colors. It can be seen
from the results that our proposed method can outperform all
baseline methods with different percentages of the training
data. In addition, the performance of our proposed method is
not sensitive to the number of training samples.

Attributed Graph Link Prediction We also conduct ex-
periments on attributed graphs. Since the heuristic method
can only be applied to plain graphs, we mainly focus on the
comparison between our proposed method and SEAL. In the
SEAL framework, the attribute is concatenated with the node
label as the input for graph neural networks. In this work,
we propose a new function to combine the node label and
node attributes. We perform the experiment on Cora dataset
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TABLE IV
AUC COMPARISON WITH BASELINE METHODS (50% TRAINING LINKS).

Model BUP C.ele USAir SMG EML NSC YST
Katz 81.61(±3.40) 79.99(±0.59) 88.91(±0.39) 80.65(±0.58) 84.16(±0.64) 95.99(±0.62) 77.28(±0.37)
PR 84.07(±3.39) 84.95(±0.58) 90.57(±0.39) 84.59(±0.45) 85.43(±0.63) 96.06(±0.60) 77.90(±3.69)
SR 80.98(±3.03) 76.05(±0.80) 81.09(±0.59) 75.28(±0.74) 83.05(±0.64) 95.59(±0.68) 73.71(±0.41)
N2V 80.94(±2.65) 75.53(±1.23) 84.63(±1.58) 73.50(±1.22) 80.15(±1.26) 94.20(±1.25) 73.62(±0.74)
SEAL 85.10(±0.82) 81.23(±1.52) 93.23(±1.46) 86.56(±0.53) 85.83(±0.46) 99.07(±0.02) 85.56(±0.28)
LGLP 88.57(±0.52) 84.60(±0.82) 95.18(±0.33) 89.54(±0.36) 86.77(±0.26) 99.33(±0.01) 87.63(±0.15)
Model Power KHN ADV LDG HPD GRQ ZWL
Katz 57.34(±0.51) 78.99(±0.20) 90.04(±0.17) 88.61(±0.19) 81.60(±0.12) 82.50(±0.21) 93.72(±0.06)
PR 57.34(±0.52) 82.34(±0.21) 90.97(±0.15) 90.50(±0.19) 83.15(±0.17) 82.64(±0.22) 95.11(±0.09)
SR 56.16(±0.45) 75.87(±0.19) 84.87(±0.14) 87.95(±0.14) 78.88(±0.22) 82.68(±0.24) 94.00(±0.10)
N2V 55.40(±0.84) 78.53(±0.72) 74.67(±0.98) 88.82(±0.44) 75.84(±1.03) 84.24(±0.35) 92.06(±0.61)
SEAL 65.80(±1.10) 87.43(±0.17) 92.75(±0.14) 92.98(±0.16) 88.05(±0.10) 90.07(±0.15) 94.94(±0.02)
LGLP 66.94(±0.60) 88.88(±0.13) 93.28(±0.10) 93.43(±0.11) 88.65(±0.09) 91.31(±0.11) 95.51(±0.01)

TABLE V
AP COMPARISON WITH BASELINE METHODS (50% TRAINING LINKS).

Model BUP C.ele USAir SMG EML NSC YST
Katz 85.94(±2.03) 83.99(±0.79) 93.51(±0.35) 87.68(±0.79) 80.54(±0.31) 98.02(±0.53) 81.63(±0.41)
PR 89.53(±2.58) 87.96(±0.86) 94.30(±0.49) 91.07(±0.69) 91.01(±0.52) 98.08(±0.59) 82.08(±0.46)
SR 81.09(±2.57) 66.43(±1.17) 69.78(±0.84) 70.39(±0.96) 87.24(±0.52) 96.55(±0.75) 76.02(±0.49)
N2V 76.05(±3.20) 73.37(±1.23) 81.03(±1.18) 73.32(±1.34) 81.12(±0.92) 95.32(±1.08) 76.61(±0.94)
SEAL 84.17(±0.62) 83.94(±1.31) 94.31(±1.13) 86.76(±0.41) 87.45(±0.41) 99.09(±0.02) 86.45(±0.25)
LGLP 89.03(±0.41) 84.80(±0.63) 94.89(±0.33) 90.23(±0.26) 88.49(±0.23) 99.38(±0.01) 89.22(±0.13)
Model Power KHN ADV LDG HPD GRQ ZWL
Katz 57.63(±0.51) 83.04(±0.38) 91.76(±0.15) 91.57(±0.17) 85.73(±0.89) 86.59(±0.20) 95.12(±0.05)
PR 57.61(±0.56) 87.18(±0.26) 92.43(±0.17) 93.53(±0.14) 87.20(±0.15) 86.73(±0.20) 96.24(±0.05)
SR 56.19(±0.49) 75.87(±0.66) 83.22(±0.20) 88.11(±0.25) 81.07(±0.18) 86.27(±0.20) 94.26(±0.11)
N2V 60.46(±0.86) 80.60(±0.74) 76.70(±0.82) 89.57(±0.64) 77.66(±0.54) 88.70(±0.26) 91.61(±0.49)
SEAL 68.67(±0.98) 90.37(±0.16) 93.52(±0.13) 94.33(±0.15) 90.25(±0.10) 92.80(±0.12) 95.88(±0.02)
LGLP 69.41(±0.50) 90.83(±0.11) 93.82(±0.10) 94.63(±0.10) 90.34(±0.09) 93.01(±0.10) 96.19(±0.01)

Fig. 3. Training loss and testing AUC comparison between our proposed LGLP and SEAL method. The training loss and testing AUC on BUP, C.ele, EML,
and SMG dataset. The training loss and testing AUC of LGLP are marked with blue and orange solid lines. Those of SEAL are marked with blue, orange
dashed lines.

TABLE VI
COMPARISON ON CORA DATASET USING PLAIN GRAPH AND ATTRIBUTED

GRAPH (50% TRAINING LINKS).

Attribute Plain
AUC AP AUC AP

SEAL 75.33 77.69 79.95 82.91
LGLP 81.45 81.99 79.96 83.30

[40] that contains 2,708 nodes and 5,429 links. Each node
in the Cora dataset is associated with an attribute vector in
1433 dimensions. We conduct the experiments without node
attribute first, and then involve the node attributes to analyze
the performance. The results are shown in Table VI. We can
find both AUC and AP decrease after using node attributes
as input in the SEAL model. In our proposed method, the

performance does not change significantly. It shows that our
proposed method can work well for both plain and attributed
graphs.

Convergence Speed Analysis Our proposed method can
learn features for the target link directly in the line graph.
Therefore, only graph convolution layers are required to ex-
tract features. In the SEAL model, the procedure is completed
in the original graph and thus requires graph convolution and
pooling layers to achieve this goal. Compared with the SEAL
model, our proposed method contains fewer parameters and
converges faster. To analyze the converging speed of two
models, we run the models on different datasets and collect the
loss and test AUC value for each epoch. The result is shown
in Figure 3. The loss and AUC of our proposed method are
marked with solid lines. Those of the SEAL model are marked
with dashed lines. It can be seen from the results that our
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Fig. 4. AUC comparison on all datasets for Katz, PR, SR, SEAL, and LGLP using different percent of training links. On each dataset, we take 30%, 40%,
50%, 60%, 70%, and 80% of all the links in G as the training set. Our proposed method LGLP is marked with solid line and all baseline methods are marked
with dashed lines in different colors.

proposed model can converge faster than the SEAL. Only 10
to 15 epochs are required to achieve the best performance
for our proposed method. It takes 50 epochs for SEAL to
converge. Therefore, our proposed method saves training time
and requires fewer model parameters.

IV. CONCLUSION

In this work, we propose a novel link prediction model
based on line graph neural networks. Graph neural networks
have achieved promising performance for the link prediction
task. To deal with graphs in different scales, graph pooling
layers are employed to extract a fixed-size feature vector in
predicting the existence of a link. However, valuable informa-
tion can be ignored in the pooling operation. In addition, graph
neural networks with pooling layers commonly require more
training time to converge. To overcome these limitations, we
propose to transform the original input graph into line graph
and thus the feature of the target link can be learned directly

in the line graph without pooling operation. Experimental
results on 14 datasets from different areas demonstrate that
our proposed method can outperform all baseline methods,
including the state-of-the-art models. In addition, our proposed
method can converge faster than the state-of-the-art model
significantly.
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